
APCS-A Java Card & Deck Coding Assignment

Before starting to write code, you should carefully and thoroughly read all pages of these instructions.

You are to create two Java files to represent a single playing card and a deck of playing cards (as described below)
that could be used as part of card games and other card-related programs. All of your work should be completed
within your CodeHS.com account, and you must always do your own work. That is, all of the code that you submit
for this assignment must be written entirely and only by you and not obtained from, or modified by, other sources.

A standard deck of 52 playing cards is divided into four suits (clubs, diamonds, hearts, spades), each
consisting of 13 ranked cards. The diamonds and hearts suits are red, while the clubs and spades are black.
Each suit contains three "face" cards (a jack, queen, and king), along with ten "pip" cards that have ranks
numbered from one to ten (with the "one" card being renamed the "ace"). For purposes of this assignment,
the ace card has a rank of 1, the jack has a rank of 11, the queen's rank is 12, and the king's rank is 13.

Write a non-static single-file class named "Card", which represents one playing card. A playing card consists of a rank and a suit:

public Card()  Required Constructor #1
This constructor selects a random rank and suit to represent a single playing card that can appear in a standard 52-card deck.

public Card(int rank, String suit)  Required Constructor #2
This constructor takes exactly two arguments: an integer and a string (in that order). The integer should be in the range of
1 to 13, representing the rank of the playing card to be constructed, and the string should be "Clubs", "Diamonds", "Hearts",
or "Spades" (with no restrictions on how the letters are cased), representing the suit. If the rank is out of range, or if the suit
is invalid, then the "bad" value(s) should be chosen randomly, but the "good" value (if there is one) should still be used.

In addition to the two constructors, for the Card class you should create the following public instance (non-static) methods:

public String getCard()  Required Method #1
This method returns the rank and suit of the constructed Card object in the format "[Rank] of [Suit]" (e.g., "Two of Diamonds" or
"Queen of Hearts" or "Ace of Spades" or "Ten of Clubs"). Each returned string consists of exactly three words and two spaces,
and it does not contain any digits. All of the characters in the string are lowercase letters, except for the first character of the
rank and the first character of the suit, which are always uppercased.

public int getRank()  Required Method #2
This method returns a number from 1 through 13 representing the rank of the constructed Card object.

public String getSuit()  Required Method #3
This method returns the suit of the Card object ("Clubs", "Diamonds", "Hearts", or "Spades", with only the first letter capitalized).

public String getColor()  Required Method #4
This method returns the color of the constructed Card object ("Black" or "Red", with only the first letter capitalized).

public String toString()  Required Method #5
This method overrides java.lang.Object.toString to return a string containing the suit and rank of the constructed playing card.
This is what is shown whenever a Card object is displayed (via a 'System.out.print' or 'System.out.println' statement). See the
sample program output for exactly how this string should be formatted (what this method should return, including spacing).

Your Card class should contain exactly two constructors and five public methods. Since an object of type "Card" represents just
one playing card, for each instance of the Card class, multiple calls to any of the public instance methods of the class should
always return the same value. To represent different playing cards, multiple instances of the Card class must be constructed.

Along with the Card class, you should write another non-static single-file class named "Deck", which represents one standard
deck of (up to) 52 unique playing cards (Card objects). This class should contain exactly one constructor, which takes no
arguments. Whenever a Deck object is created, it must initially contain exactly 52 unique Card objects. How much code (if
any) the constructor contains will depend on how you choose to represent the deck of cards and/or the drawn card list (read
on). In addition to the lone constructor, your Deck class should contain the following public instance (non-static) methods:

public Card drawCard()  Required Method #1
This method draws and returns a single Card object with a random rank and suit matching the rank and suit of a playing card that
is currently in the deck. If no cards are in the deck, then 'null' is returned.

public Card[] drawCards(int numCardsToDraw, boolean shouldSort)  Required Method #2
This method returns an array (not an ArrayList) of 'numCardsToDraw' Card objects, each with a random rank and suit that
matches the rank and suit of a playing card that is currently in the deck. The length of the array equals the number of drawn
cards. The order of the Card objects in the array is random, unless 'shouldSort' is 'true', in which case the Card objects are
sorted in ascending alphabetical order by suit, with each suit sorted in ascending numerical order by rank. If there are not at
least 'numCardsToDraw' cards in the deck, or if 'numCardsToDraw' is zero or negative, then a zero-length array is returned.

public Card[] drawCards(int numCardsToDraw, String cardInfo, boolean shouldSort)  Required Method #3
This method functions in the same manner as the above 'drawCards' method, with the exception that it accepts an additional
argument, a string that should be "Clubs", "Diamonds", "Hearts", "Spades", "Black", or "Red" (with no restrictions on how the
letters are cased). The returned array contains only Card objects with randomly-selected suits/colors that match 'cardInfo'. If
not enough 'cardInfo' cards are in the deck, or if 'cardInfo' is not a valid suit or color, then a zero-length array is returned.

public boolean returnCardToDeck(Card cardToReturn)  Required Method #4
This method attempts to place the playing card matching the rank and suit of the supplied Card object back into the deck. If
successful, then 'true' is returned. If the card is already in the deck, then 'false' is returned.

public boolean isCardInDeck(Card cardToCheck)  Required Method #5
This method returns 'true' if the playing card matching the rank and suit of the supplied Card object is currently in the deck,
or 'false' if it is not.

public int getNumCardsInDeck()  Required Method #6
This method returns the number of playing cards currently in the deck.

public void resetDeck()  Required Method #7
This method "resets" the deck so that it contains all 52 unique playing cards.

public String toString()  Required Method #8
This method overrides java.lang.Object.toString to return a string containing a list (sorted by suit, then rank) of every playing card
currently in the deck. This is what is shown whenever a Deck object is displayed (via a 'System.out.print' or 'System.out.println'
statement). See the sample program output for exactly how this string should be formatted (what this method should return).

An object of type "Deck" represents one standard deck of 52 playing cards. So, in the same way that additional instances of the
Card class must be created in order to represent more than one playing card, new instances of the Deck class must be made in
order to represent multiple decks of cards. However, unlike a Card object, which knows nothing about other playing cards, a
Deck object must always be able to determine which cards are currently in the deck and which cards are not in the deck.

For the three public methods of the Deck class used to draw cards, make sure every drawn card is currently in the deck. That is,
the rank/suit combination of every newly-drawn card must match a card currently in the deck. After a card is drawn, the card is
no longer in the deck and cannot be drawn again (unless the card has been returned to the deck). Within the Deck class you may
represent the deck of cards and the drawn card list in any manner of your choosing (including not even having two separate lists).

When creating new Card objects from within the Deck class, it is up to you which of the two Card class constructors to use. You
may use either one, or both. How you decide to store cards in the deck and/or the drawn card list, as well as your approach to
drawing cards from the deck, may influence your decision regarding which constructor to use and when to construct new cards.

The signatures of your public methods in both the Card Class and the Deck class must exactly match the method signatures
shown above, including the parameter names and return types. The keyword 'static' and a 'main' method should not appear
anywhere in either of the two classes. None of the constructors or the regular methods in either class should display anything.

For both the Card class and the Deck class, in addition to the public instance methods described above, you are welcome to write
other "helper" methods. If you do, make sure they are all private and non-static. You may also create private instance variables
to use throughout the two classes. And, even though the "drawCards" methods of the Deck class must each return an array, you
may use private ArrayLists internally within the Deck class (as well as within the Card class) if you wish.

You may use global variables in both of your classes. Be sure to comment your code sufficiently, indent and space your code
properly, and use meaningful identifier names. The design and layout of your code will be factored into your assignment score.

You will almost certainly want to create a calling class to test your work as you write the two required classes. However, the only
files that will be examined and graded are "Card.java" and "Deck.java".

Sample Calling Class (the red letters are provided to help you quickly match the code with the output)

public static void main(String[] args)
{

A  System.out.println("Create two decks of playing cards.");
 Deck deck1 = new Deck(), deck2 = new Deck();
 System.out.println("Number of cards in Deck #1: " + deck1.getNumCardsInDeck());

B  System.out.println("\nCreate a random Card object.");
 Card card1 = new Card();
 System.out.println("Can the new card be added to Deck #1? " + deck1.returnCardToDeck(card1));

C  System.out.println("\nDraw a random card from Deck #1 using the 'drawCard' method.");
 Card card2 = deck1.drawCard();
 System.out.println("Show the random card using the 'toString' method: " + card2);
 System.out.println("Show the random card using the 'getCard' method: " + card2.getCard());

D  System.out.println("\nDeck #1: Draw 9 random cards. Receive in RANDOM order. Show using 'getCard':");
 Card[] hand1 = deck1.drawCards(9, false);
 for (int i = 0; i < hand1.length; i++)
 System.out.println(" " + hand1[i].getCard());

E  System.out.println("\nDeck #1: Draw 9 random cards. Receive in SORTED order. Show using 'getCard':");
 Card[] hand2 = deck1.drawCards(9, true);
 for (int i = 0; i < hand2.length; i++)
 System.out.println(" " + hand2[i].getCard());

F  System.out.println("\nShow the same 9 cards using 'toString':");
 for (int i = 0; i < hand2.length; i++)
 System.out.println(" " + hand2[i]);

G  System.out.println("\nDeck #1: Draw 8 random SPADES cards. Receive in SORTED order. Show using 'getCard':");
 Card[] hand3 = deck1.drawCards(8, "spades", true);
 for (int i = 0; i < hand3.length; i++)
 System.out.println(" " + hand3[i].getCard());

H  System.out.println("\nDeck #1: Draw 8 random RED cards. Receive in SORTED order. Show using 'getCard':");
 Card[] hand4 = deck1.drawCards(8, "rEd", true);
 for (int i = 0; i < hand4.length; i++)
 System.out.println(" " + hand4[i].getCard());

I  System.out.println("\nIs the Six of Hearts in Deck #1? " + deck1.isCardInDeck(new Card(6, "hearts")));
 System.out.println("Number of cards in Deck #1: " + deck1.getNumCardsInDeck());

J  System.out.println("\nDeck #1: Draw 14 random cards. Receive in RANDOM order. Show using 'toString':");
 Card[] hand5 = deck1.drawCards(14, false);
 for (int i = 0; i < hand5.length; i++)
 System.out.println(" " + hand5[i]);

K  System.out.println("\nNumber of cards in Deck #1: " + deck1.getNumCardsInDeck());
 System.out.println("Attempt to draw 4 random cards from Deck #1.");
 Card[] hand6 = deck1.drawCards(4, false);
 System.out.println("Length of returned array of Card objects: " + hand6.length);

L  System.out.println("\nShow all of the cards in Deck #1 (uses 'toString'): " + deck1);

M  System.out.println("\nDraw a random card from Deck #1 using the 'drawCard' method.");
 Card card3 = deck1.drawCard();
 System.out.println("Show the random card using the 'getCard' method: " + card3.getCard());
 System.out.println("Show all of the cards in Deck #1 (uses 'toString'): " + deck1);

N  System.out.println("\nCan the drawn card be returned to Deck #1? " + deck1.returnCardToDeck(card3));
 System.out.println("Show all of the cards in Deck #1 (uses 'toString'): " + deck1);

O  System.out.println("\nRank of first card in above array of 14 Card objects: " + hand5[0].getRank());
 System.out.println("Suit of first card in above array of 14 Card objects: " + hand5[0].getSuit());
 System.out.println("Color of first card in above array of 14 Card objects: " + hand5[0].getColor());

P  System.out.println("\nReset Deck #1.");
 deck1.resetDeck();
 System.out.println("Number of cards in Deck #1: " + deck1.getNumCardsInDeck());

Q  System.out.println("\nAttempt to draw -5 random purple cards from Deck #1.");
 Card[] hand7 = deck1.drawCards(-5, "PuRpLe", false);
 System.out.println("Length of returned array of Card objects: " + hand7.length);

R  System.out.println("\nNumber of cards in Deck #2: " + deck2.getNumCardsInDeck());

S  System.out.println("\nDeck #2: Draw 26 random BLACK cards. Receive in SORTED order. Show with 'getCard':");
 Card[] hand8 = deck2.drawCards(26, "BLACK", true);
 for (int i = 0; i < hand8.length; i++)
 System.out.println(" " + hand8[i].getCard());

T  System.out.println("\nDeck #2: Draw 26 random RED cards. Receive in SORTED order. Show with 'toString':");
 Card[] hand9 = deck2.drawCards(26, "red", true);
 for (int i = 0; i < hand9.length; i++)
 System.out.println(" " + hand9[i]);

U  System.out.println("\nNumber of cards in Deck #2: " + deck2.getNumCardsInDeck());
 System.out.println("Show all of the cards in Deck #2 (uses 'toString'): " + deck2);

V  System.out.println("\nUse 'drawCard' to draw and show a random card from Deck #2: " + deck2.drawCard());
}

Sample Output from the Sample Calling Class

A  Create two decks of playing cards.
Number of cards in Deck #1: 52

B  Create a random Card object.
Can the new card be added to Deck #1? false  This fails because
 the deck is full.

C  Draw a random card from Deck #1 using the 'drawCard' method.
Show the random card using the 'toString' method: Suit = Spades Rank = Seven
Show the random card using the 'getCard' method: Seven of Spades

D  Deck #1: Draw 9 random cards. Receive in RANDOM order. Show using 'getCard':
 Eight of Diamonds
 Six of Clubs
 Queen of Spades
 Eight of Clubs
 Four of Diamonds
 Nine of Clubs
 Jack of Hearts
 Queen of Clubs
 Seven of Clubs

E  Deck #1: Draw 9 random cards. Receive in SORTED order. Show using 'getCard':
 Ace of Clubs
 Six of Diamonds
 Jack of Diamonds
 Four of Hearts
 Eight of Hearts
 Queen of Hearts
 King of Hearts
 Four of Spades
 King of Spades

F  Show the same 9 cards using 'toString':
 Suit = Clubs Rank = Ace
 Suit = Diamonds Rank = Six
 Suit = Diamonds Rank = Jack
 Suit = Hearts Rank = Four
 Suit = Hearts Rank = Eight
 Suit = Hearts Rank = Queen
 Suit = Hearts Rank = King
 Suit = Spades Rank = Four
 Suit = Spades Rank = King

G  Deck #1: Draw 8 random SPADES cards. Receive in SORTED order. Show using 'getCard':  Based on 'C' and 'D'
 Ace of Spades and 'E' above, this
 Three of Spades draw attempt may not
 Five of Spades always be successful.
 Six of Spades
 Eight of Spades
 Nine of Spades
 Ten of Spades
 Jack of Spades

H  Deck #1: Draw 8 random RED cards. Receive in SORTED order. Show using 'getCard':
 Ace of Diamonds
 Two of Diamonds
 Three of Diamonds
 Five of Diamonds
 Seven of Diamonds
 Ace of Hearts
 Three of Hearts
 Seven of Hearts
 Due to randomness,

I  Is the Six of Hearts in Deck #1? true  this can just as
Number of cards in Deck #1: 17 easily be false.

J  Deck #1: Draw 14 random cards. Receive in RANDOM order. Show using 'toString':
 Suit = Clubs Rank = King  Notice the spacing
 Suit = Clubs Rank = Two (how "Rank" is lined
 Suit = Hearts Rank = Two up vertically with
 Suit = Hearts Rank = Six each row of output).
 Suit = Clubs Rank = Jack
 Suit = Hearts Rank = Nine
 Suit = Clubs Rank = Five There are 3 spaces
 Suit = Diamonds Rank = Ten  between "Diamonds"
 Suit = Hearts Rank = Ten and "Rank".
 Suit = Clubs Rank = Three
 Suit = Hearts Rank = Five
 Suit = Spades Rank = Two There are 6 spaces
 Suit = Clubs Rank = Four  between "Clubs"
 Suit = Diamonds Rank = Queen and "Rank".

K  Number of cards in Deck #1: 3
Attempt to draw 4 random cards from Deck #1.
Length of returned array of Card objects: 0

L  Show all of the cards in Deck #1 (uses 'toString'): {Ten of Clubs | Nine of Diamonds | King of Diamonds}

M  Draw a random card from Deck #1 using the 'drawCard' method. Notice the braces and
Show the random card using the 'getCard' method: Nine of Diamonds pipe symbols in 'L'
Show all of the cards in Deck #1 (uses 'toString'): {Ten of Clubs | King of Diamonds} and 'M' and 'N'.

N  Can the drawn card be returned to Deck #1? true
Show all of the cards in Deck #1 (uses 'toString'): {Ten of Clubs | Nine of Diamonds | King of Diamonds}

O  Rank of first card in above array of 14 Card objects: 13 Above: Sorted first
Suit of first card in above array of 14 Card objects: Clubs by suit, and then
Color of first card in above array of 14 Card objects: Black numerically by rank.

P  Reset Deck #1.
Number of cards in Deck #1: 52
 Number and type are

Q  Attempt to draw -5 random purple cards from Deck #1.  both invalid; either
Length of returned array of Card objects: 0 one causes failure.

R  Number of cards in Deck #2: 52

S  Deck #2: Draw 26 random BLACK cards. Receive in SORTED order. Show with 'getCard':
 Ace of Clubs
 Two of Clubs
 Three of Clubs
 Four of Clubs
 Five of Clubs
 Six of Clubs
 Seven of Clubs
 Eight of Clubs
 Nine of Clubs
 Ten of Clubs
 Jack of Clubs
 Queen of Clubs
 King of Clubs
 Ace of Spades
 Two of Spades
 Three of Spades
 Four of Spades
 Five of Spades
 Six of Spades
 Seven of Spades
 Eight of Spades
 Nine of Spades
 Ten of Spades
 Jack of Spades
 Queen of Spades
 King of Spades

T  Deck #2: Draw 26 random RED cards. Receive in SORTED order. Show with 'toString':
 Suit = Diamonds Rank = Ace
 Suit = Diamonds Rank = Two
 Suit = Diamonds Rank = Three
 Suit = Diamonds Rank = Four
 Suit = Diamonds Rank = Five
 Suit = Diamonds Rank = Six
 Suit = Diamonds Rank = Seven
 Suit = Diamonds Rank = Eight
 Suit = Diamonds Rank = Nine
 Suit = Diamonds Rank = Ten
 Suit = Diamonds Rank = Jack
 Suit = Diamonds Rank = Queen
 Suit = Diamonds Rank = King
 Suit = Hearts Rank = Ace
 Suit = Hearts Rank = Two
 Suit = Hearts Rank = Three
 Suit = Hearts Rank = Four
 Suit = Hearts Rank = Five
 Suit = Hearts Rank = Six
 Suit = Hearts Rank = Seven
 Suit = Hearts Rank = Eight
 Suit = Hearts Rank = Nine
 Suit = Hearts Rank = Ten
 Suit = Hearts Rank = Jack
 Suit = Hearts Rank = Queen
 Suit = Hearts Rank = King

U  Number of cards in Deck #2: 0
Show all of the cards in Deck #2 (uses 'toString'): {}

V  Use 'drawCard' to draw and show a random card from Deck #2: null

