
APCS-A Java Classwork – Number Sorter

Overview
You are to write a menu-driven Java program to demonstrate the use of four sorting
algorithms: bubble sort, selection sort, insertion sort, and mergesort. Each sort
must be able to arrange an ArrayList of (unlimited) integers in non-decreasing order.

When your program begins, the user should be prompted to enter the name of a disk text
file (of integers) from which all of the numbers should be read into an ArrayList. The
user should then be presented with a five-option menu that allows the user to choose
which of the four sorts (bubble, selection, insertion, merge) should be used to sort
the integers into non-decreasing numerical order. The fifth menu option should allow
the user to quit the program.

After the user chooses a sort, your program should display the ArrayList of integers in
its original (disk text file) order. Then the program should sort the numbers (using
the user-chosen sort) and display the ArrayList of integers in sorted order. After
that, the program should return to the menu.

Logistics
Your entire program (including a 'main' method) must be contained within a single file
named "NumberSorter.java". The disk-reading code, menu, and individual sorts must each
have their own method. It is okay if these methods call helper methods (such as the
required "swap" method), but do not inappropriately daisy chain methods together. The
mergesort requires two methods: one recursive method and one non-recursive method.
Your 'main' method should be as short as possible; most of your code should be located
in separate methods, with each method performing a single task.

Your program must not contain any global variables. The ArrayList of integers should
be defined in your 'main' method and passed as an argument to the other methods. Your
program must use an ArrayList of type 'Integer' to store all of the numbers to be
sorted. In your individual methods you may use multiple ArrayLists, but you may not
use Arrays, HashMaps, or other list-related classes or methods anywhere in your
program. Also, you may not use an ArrayList of any type other than 'Integer'.

For reading the integers from the user-supplied disk text file, you may want to reuse
code from your previous coding assignment, "Word List Examiner". You will need to
modify the code slightly so that it properly reads Integers, not Strings.

Menu and Program Flow
When the five-option menu is shown to the user, it must be displayed neatly, with each
option on its own line. Each line should start with a number, and the user will enter
a number (1 through 5) to select which sort should be used (or to quit the program).

After a sort is performed, your program must re-display the menu to the user and allow
the user to sort the list again (using the same or a different sort) or quit the
program. Since the user can perform repeated sorts using the same data set, your
program will need to reset the ArrayList to its original (unsorted) state before a new
sort is started. Note that if the user chooses to re-sort the list of numbers, your
program must actually re-sort the user's list, rather than simply displaying a list in
which the integers have already been sorted.

Your method containing the menu should never call itself, and you should not return to
the menu by calling it from a method containing sort code. In other words, the method
containing the menu must be called from exactly one location. Leaving and returning to
the menu method should be handled entirely via 'while' and/or 'do-while' loops. Also,
the commands "break" and "System.exit" must not appear anywhere in your program.

Swap Method
Your program must contain exactly one "swap" method (named "swap"), which should be
called by the bubble sort, the selection sort, and (possibly) the mergesort. The
"swap" method must accept three arguments (in this order): the ArrayList of values,
followed by two integers representing the indices of the two list values to be swapped.

Error Trapping
Other than what is required by the 'Scanner' class, your program does not need to
perform error trapping. You may assume that the user will enter the name of a disk
text file that is present and contains only integers. You may also assume that the
user will enter only a 1, 2, 3, 4, or 5 when presented with the menu of options.

Reminder
You must always do your own work, and with the exception of the pieces of C++ starter
code for the sorts (see below), every bit of code that you submit for this assignment
must be entirely written by you, and only by you. Remember that working with another
person, having someone else give you code or tell you what to type, or looking at code
written by someone other than you is considered cheating, even if you do not directly
copy that code into your program.

Starter Code
For this assignment, you are not required to create from scratch, or memorize, the
sorts for your program. Instead, you are permitted to use the following online files:

 https://redwood.org/demos/cpp/BubbleSort.txt
 https://redwood.org/demos/cpp/SelectionSort.txt
 https://redwood.org/demos/cpp/InsertionSort.txt
 https://redwood.org/demos/cpp/Mergesort.txt

Note that the above files contain C++ code, and they use arrays. You will need to
convert them to use Java ArrayLists. Also note that these are the only pieces of
external code that you are allowed to use in your program. You may modify the code
from the above files in any way that you see fit (as long as the modifications meet
the requirements of this assignment), and you are not required to use the above files
at all. In other words, you are welcome to write the sorts entirely on your own.

Example Program
On the next pages is the input and output from several runs of my working, acceptable
version of this program. In my sample runs I have used the menu options in a way that
should provide you with everything you need to know regarding how your program should
perform. Your program should provide the user with the same options as my program and
should function in the same manner. However, the wording of the menu options and the
output from your program do not have to match my program exactly. Note that when I
grade your submission, in addition to running your program with my own disk text file,
I will also look through your code to make sure your program has been written properly.

Advanced Options
1) Error trap for a missing disk text file, non-integers in the disk text file, and
 "bad" user-entered data at the menu. You may decide how to respond to bad data.

2) Change your iterative selection sort into a recursive selection sort.

3) Change your iterative insertion sort into a recursive insertion sort.

4) Add a recursive quicksort algorithm and corresponding menu option to your program.

5) Create your own custom sort and add a corresponding menu option. If choosing this
 advanced option, in your code, right above the extra method that contains your
 custom sort, use comments to explain how your sort works and how it differs from
 the other sorts in your program.

Program Run #1
==============
DAVE'S INTEGER SORTER PROGRAM

Enter the name of the disk text file containing integers to be sorted: numbers.txt

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 3

Insertion Sort:
 Original List: [32, 12, 100]
 Sorted List: [12, 32, 100]

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 1

Bubble Sort:
 Original List: [32, 12, 100]
 Sorted List: [12, 32, 100]

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 5

Goodbye.

Program Run #2
==============
DAVE'S INTEGER SORTER PROGRAM

Enter the name of the disk text file containing integers to be sorted: list.txt

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 5

Goodbye.

Program Run #3
==============
DAVE'S INTEGER SORTER PROGRAM

Enter the name of the disk text file containing integers to be sorted: nums.txt

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 4

Mergesort:
 Original List: [6, 3, 1, 6, 5, 1, 2, 7, 10, 4]
 Sorted List: [1, 1, 2, 3, 4, 5, 6, 6, 7, 10]

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 4

Mergesort:
 Original List: [6, 3, 1, 6, 5, 1, 2, 7, 10, 4]
 Sorted List: [1, 1, 2, 3, 4, 5, 6, 6, 7, 10]

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 2

Selection Sort:
 Original List: [6, 3, 1, 6, 5, 1, 2, 7, 10, 4]
 Sorted List: [1, 1, 2, 3, 4, 5, 6, 6, 7, 10]

Choose which type of sort you would like to use:
 1) Bubble Sort
 2) Selection Sort
 3) Insertion Sort
 4) Mergesort
 5) QUIT PROGRAM

Enter a choice (1-5): 5

Goodbye.

