Practice Masters Level A

3.4 Proving That Lines are Parallel

Use the figure at right to complete the two-column proof:
Given: $\angle 4 \cong \angle 14 ; \mathrm{m} \angle 11+\mathrm{m} \angle 8=180^{\circ}$
Prove: $r \| s$

Statements	Reasons	
$\angle 4 \cong \angle 14$	1. Given	
$m \\| n$	2. Transversal with congruent alternate	
exterior angles means $\\|$ lines		$\}$

For Exercises 7-10, refer to the diagram at right, and fill in the name of the appropriate theorem or postulate.
7. If $\mathrm{m} \angle 3=\mathrm{m} \angle 6$, then $m \| n$ by the Converse of the Alternate Interior Angles Theorem
8. If $m \angle 2=m \angle 6$, then $m \| n$ by the Converse of the Corresponding Angles Postulate
9. If $\mathrm{m} \angle 2=\mathrm{m} \angle 7$, then $m \| n$ by the Converse of the

Alternate Exterior Angles Theorem
10. If $\angle 3$ and $\angle 5$ are supplementary, then $m \| n$ by the Converse of the Same-Side Interior Angles Theorem

For Exercises 11-12, use the figure at right.
11. If $\overline{B A} \perp \overline{B C}$ and $\overline{E D} \perp \overline{E C}$, what is the relationship between $\overline{B A}$ and $\overline{E D}$? Explain.

BA || ED because two coplanar lines perpendicular to the same line are || each other.
12. If $\overline{D E} \| \overline{B A}$ and $\overline{G F} \| \overline{D E}$, what is the relationship between $\overline{B A}$ and $\overline{G F}$? Explain. $\mathrm{BA} \| \mathrm{GF}$ because two coplanar lines $\|$ the same line are

\qquad
\qquad

Practice Masters Level B
 3.4 Proving That Lines are Parallel

Use the figure at right to complete the two-column proof:

Given: $\angle 4 \cong \angle 16 ; \mathrm{m} \angle 4+\mathrm{m} \angle 1=180^{\circ}$
Prove: $m \| n$

Statements	Reasons		
$\mathrm{m} \angle 4+\mathrm{m} \angle 3=180^{\circ}$	1. Two angles forming a linear pair are supplementary		
$\mathrm{m} \angle 4+\mathrm{m} \angle 1=180^{\circ}$	2. Given		
$\mathrm{m} \angle 1=\mathrm{m} \angle 3$	3. If two angles are supplements of the same angle, then the angles are congruent		
$r \\| s$	4. Transversal with congruent corresponding angles means $\\|$ lines		
$\mathrm{m} \angle 2=\mathrm{m} \angle 4$	5. Transversal with $\\|$ lines means congruent corresp. angles		
$\mathrm{m} \angle 2=\mathrm{m} \angle 8$	6. Vertical angles are congruent		
$\mathrm{m} \angle 4=\mathrm{m} \angle 8$	7. Transitive Property of Congruence		
$\mathrm{m} \angle 4=\mathrm{m} \angle 16$	8. Given		
$\mathrm{m} \angle 8=\mathrm{m} \angle 16$	9. Transitive Property of Congruence		
$m \\| n$	10. Transversal with congruent corresponding angles means $\\|$ lines.		

11. In the figure at right, $\mathrm{m} \angle 1=3 x+14, \mathrm{~m} \angle 2=9 x-14$, and $\mathrm{m} \angle 3=30 x+14$. Determine whether or not $r \| s$. Justify your answer.

Lines r and s are NOT parallel. Since angle 1 is congruent to angle 2 (because they are vertical angles), $x=14 / 3$. When that value is plugged back in, the measure of angle 1 and the measure of angle $2=28$ degrees, and the measure of angle 3 equals 154 degrees. But 154 degrees plus 28 degrees does not equal
180 degrees, so the lines are not parallel.

Use the figure at right for the statements in Exercises 12-15. What conclusion can you draw from each statement? Justify your answer.

12. $\mathrm{m} \angle 1=\mathrm{m} \angle 4 \xrightarrow{\mathrm{~m} \| \mathrm{n} \text { from Converse of Alternate Interior Angles Theorem }}$
13. $m \perp t$ and $m \perp \boldsymbol{q} \xrightarrow{\mathrm{t} \| \mathrm{q} \text { since two coplanar lines perp. to same line are } \| \text { each other }}$

14. $s \| q$ and $t \| q \xrightarrow{\text { s } \| \mathrm{t} \text { since two coplanar lines } \| \text { same line means they are } \| \text { each other } \mathrm{t}}$
15. $\mathrm{m} \angle 3=\mathrm{m} \angle 1 \quad \mathrm{t} \| \mathrm{q}$ from Converse of Alternate Exterior Angles Theorem
