

In your own words, write the meaning of each vocabulary term.

midpoint

segment bisector

Core Concepts

Midpoints and Segment Bisectors

The **midpoint** of a segment is the point that divides the segment into two congruent segments.

M is the midpoint of \overline{AB} . So, $\overline{AM} \cong \overline{MB}$ and AM = MB.

A **segment bisector** is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector *bisects* a segment.

 \overrightarrow{CD} is a segment bisector of \overrightarrow{AB} . So, $\overrightarrow{AM} \cong \overrightarrow{MB}$ and $\overrightarrow{AM} = MB$.

Notes:

1.3 Notetaking with Vocabulary (continued)

The Midpoint Formula

The coordinates of the midpoint of a segment are the averages of the *x*-coordinates and of the *y*-coordinates of the endpoints.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint *M* of \overline{AB} has coordinates

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$
.

Notes:

The Distance Formula

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between *A* and *B* is

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Notes: