2.1 Notetaking with Vocabulary (continued)

Core Concepts

Conditional Statement

A conditional statement is a logical statement that has two parts, a *hypothesis* p and a *conclusion* q. When a conditional statement is written in **if-then form**, the "if" part contains the **hypothesis** and the "then" part contains the **conclusion**.

Words If p, then q. **Symbols** $p \rightarrow q$ (read as "p implies q")

Notes:

Negation

The **negation** of a statement is the *opposite* of the original statement. To write the negation of a statement p, you write the symbol for negation (~) before the letter. So, "not p" is written $\sim p$.

Words not p **Symbols** $\sim p$

Notes:

Related Conditionals

Consider the conditional statement below.

Words	If p , then q .	Symbols	$p \rightarrow q$
Converse	To write the converse of a c and the conclusion.	conditional stater	nent, exchange the hypothesis
Words	If q , then p .	Symbols	$q \rightarrow p$
Inverse	To write the inverse of a conditional statement, negate both the hypothesis and the conclusion.		
Words	If not p , then not q .	Symbols	$\sim p \rightarrow \sim q$

2.1 Notetaking with Vocabulary (continued)

Related Conditionals (continued)

ContrapositiveTo write the contrapositive of a conditional statement, first write
the converse. Then negate both the hypothesis and the conclusion.WordsIf not q, then not p.Symbols $\sim q \rightarrow \sim p$

A conditional statement and its contrapositive are either both true or both false. Similarly, the converse and inverse of a conditional statement are either both true or both false. In general, when two statements are both true or both false, they are called **equivalent statements**.

Notes:

Biconditional Statement

When a conditional statement and its converse are both true, you can write them as a single *biconditional statement*. A **biconditional statement** is a statement that contains the phrase "if and only if."

Wordsp if and only if qSymbols $p \leftrightarrow q$

Any definition can be written as a biconditional statement.

Notes: