\qquad

In your own words, write the meaning of each vocabulary term.
Pythagorean triple

Theorems

Theorem 9.1 Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Notes:

$$
c^{2}=a^{2}+b^{2}
$$

Core Concepts

Common Pythagorean Triples and Some of Their Multiples

$\mathbf{3 , 4 , 5}$	$\mathbf{5 , 1 2 , 1 3}$	$\mathbf{8 , 1 5}, \mathbf{1 7}$	$\mathbf{7 , 2 4 , 2 5}$
$6,8,10$	$10,24,26$	$16,30,34$	$14,48,50$
$9,12,15$	$15,36,39$	$24,45,51$	$21,72,75$
$3 x, 4 x, 5 x$	$5 x, 12 x, 13 x$	$8 x, 15 x, 17 x$	$7 x, 24 x, 25 x$

The most common Pythagorean triples are in bold. The other triples are the result of multiplying each integer in a bold-faced triple by the same factor.

Notes:

\qquad

9.1 Notetaking with Vocabulary (continued)

Theorems

Theorem 9.2 Converse of the Pythagorean Theorem

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

If $c^{2}=a^{2}+b^{2}$, then $\triangle A B C$ is a right triangle.

Notes:

Theorem 9.3 Pythagorean Inequalities Theorem

For any $\triangle A B C$, where c is the length of the longest side, the following statements are true.

If $c^{2}<a^{2}+b^{2}$, then $\triangle A B C$ is acute. If $c^{2}>a^{2}+b^{2}$, then $\triangle A B C$ is obtuse.

$c^{2}<a^{2}+b^{2}$

$c^{2}>a^{2}+b^{2}$

Notes:

