9.1 Notetaking with Vocabulary For use after Lesson 9.1

In your own words, write the meaning of each vocabulary term.

Pythagorean triple

Theorems

Theorem 9.1 Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Notes:

Core Concepts

Common Pythagorean Triples and Some of Their Multiples

3, 4, 5	5, 12, 13	8, 15, 17	7, 24, 25
6, 8, 10	10, 24, 26	16, 30, 34	14, 48, 50
9, 12, 15	15, 36, 39	24, 45, 51	21, 72, 75
3x, 4x, 5x	5x, 12x, 13x	8x, 15x, 17x	7x, 24x, 25x

The most common Pythagorean triples are in bold. The other triples are the result of multiplying each integer in a bold-faced triple by the same factor.

Notes:

Theorems

Theorem 9.2 Converse of the Pythagorean Theorem

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

If $c^2 = a^2 + b^2$, then $\triangle ABC$ is a right triangle.

Notes:

Theorem 9.3 Pythagorean Inequalities Theorem

For any $\triangle ABC$, where *c* is the length of the longest side, the following statements are true.

If $c^2 < a^2 + b^2$, then $\triangle ABC$ is acute.

If $c^2 > a^2 + b^2$, then $\triangle ABC$ is obtuse.

Notes: