4.6 Practice A

1.

2.

3. reflection in the y-axis, followed by a dilation with a scale factor of 2
4. yes; The triangle is a translation;
$(x, y) \rightarrow(x+5, y-1)$ followed by a dilation of
$(x, y) \rightarrow\left(\frac{2}{3} x, \frac{2}{3} y\right)$; Points C and F do not follow
these transformations, so it is not a similarity transformation.
5. yes; The quadrilateral can first be rotated 180° about the origin (or, reflected in the y-axis and then the x-axis). Then the figure can be dilated with a scale factor of $k=0.5$ and translated to its final position.
6. Rotate $\triangle P Q R$ so that side a is parallel to side b.

Translate $\Delta G H I$ so that point G maps to point P. Because translations preserve angle measure, and all of the angles of an equilateral triangle are 60°, $\Delta G H I$ lies on $\triangle P Q R$. Because, $\overrightarrow{G I}$ coincides with $\overrightarrow{P R}$ and $\overrightarrow{G H}$ coincides with $\overrightarrow{P Q}, \overline{G I}$ lies on $\overrightarrow{P R}$ and $\overline{G H}$ lies on $\overline{P Q}$. Finally, dilate $\triangle P Q R$ about point P by a scale factor of $\frac{b}{a}$ so that it is the same size as $\triangle G H I$. Because a similarity transformation maps $\triangle P Q R$ onto $\triangle G H I$, the triangles are similar.
7. no; A square and a rectangle are not similar, so you cannot use a similarity transformation to change the shape of the object.
8. no; For example begin with a unit square centered at the origin. If you perform a dilation centered at the origin with a scale factor 2 and then translate 1 unit right, the result is not the same as if you first translate the square 1 unit right and then perform a dilation centered at the origin with a scale factor of 2 .
9. All white triangles are dilations and translations. There are no rotations in the image.

