4.6 Practice A

- **3.** reflection in the *y*-axis, followed by a dilation with a scale factor of 2
- 4. yes; The triangle is a translation; $(x, y) \rightarrow (x + 5, y - 1)$ followed by a dilation of $(x, y) \rightarrow (\frac{2}{3}x, \frac{2}{3}y)$; Points *C* and *F* do not follow these transformations, so it is not a similarity transformation.
- **5.** yes; The quadrilateral can first be rotated 180° about the origin (or, reflected in the *y*-axis and then the *x*-axis). Then the figure can be dilated with a scale factor of k = 0.5 and translated to its final position.
- **6.** Rotate ΔPQR so that side *a* is parallel to side *b*. Translate ΔGHI so that point *G* maps to point *P*. Because translations preserve angle measure, and all of the angles of an equilateral triangle are 60°, ΔGHI lies on ΔPQR . Because, \overline{GI} coincides with \overline{PR} and \overline{GH} coincides with \overline{PQ} , \overline{GI} lies on \overline{PR} and \overline{GH} lies on \overline{PQ} . Finally, dilate ΔPQR about point *P* by a scale factor of $\frac{b}{a}$ so that it is the same size as ΔGHI . Because a similarity transformation maps ΔPQR onto ΔGHI , the triangles are similar.
- **7.** no; A square and a rectangle are not similar, so you cannot use a similarity transformation to change the shape of the object.
- **8.** no; For example begin with a unit square centered at the origin. If you perform a dilation centered at the origin with a scale factor 2 and then translate 1 unit right, the result is not the same as if you first translate the square 1 unit right and then perform a dilation centered at the origin with a scale factor of 2.
- **9.** All white triangles are dilations and translations. There are no rotations in the image.