\qquad
\qquad

7.3 Practice A

In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.
1.

2.

In Exercises 3 and 4, find the value of x that makes the quadrilateral a parallelogram.
3.

4.

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.
5. $A(-4,-2), B(-2,1), C(4,1), D(2,-2)$
6. $E(-4,1), F(-1,5), G(11,0), H(8,-4)$
7. Use the diagram to write a two-column proof.

Given: $\angle A \cong \angle A B E$

$$
\overline{A E} \cong \overline{C D}, \overline{B C} \cong \overline{D E}
$$

Prove: $B C D E$ is a parallelogram.

8. In the diagram of the handrail for a staircase shown, $m \angle A=145^{\circ}$ and $\overline{A B} \cong \overline{C D}$.
a. Explain how to show that $A B D C$ is a parallelogram.
b. Describe how to prove that $C D F E$ is a parallelogram.
c. Can you prove that $E F H G$ is a parallelogram?

Explain.

d. Find $m \angle A C D, m \angle D C E, m \angle C E F$, and $m \angle E F D$.
\qquad

7.3 Practice B

In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.
1.

2.

In Exercises 3 and 4, find the value of x that makes the quadrilateral a parallelogram.
3.

4.

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.
5. $W(-3,-1), X(-3,4), Y(3,2), Z(3,-3)$
6. $A(-4,0), B(2,2), C(5,-1), D(-1,-3)$
7. Use the diagram to write a two-column proof.

Given: $\angle A \cong \angle F D E$
F is the midpoint of $\overline{A D}$.
D is the midpoint of $\overline{C E}$.

Prove: $A B C D$ is a parallelogram.
8. A quadrilateral has two pairs of congruent angles. Can you determine whether the quadrilateral is a parallelogram? Explain your reasoning.
9. An octagon star is shown in the figure on the right.
a. Find $m \angle F C G, m \angle B C F$, and $m \angle D$.
b. State which theorem you can use to show that the quadrilateral is a parallelogram.
c. The length of $\overline{A B}$ is three times the length of $\overline{A D}$. Write an expression for the perimeter of parallelogram $A B C D$ in terms of the variable x.

