\qquad

10.1 Practice A

In Exercises 1-5, use the diagram.

1. Name the circle.
2. Name two radii.
3. Name two chords.
4. Name a secant.
5. Name a tangent.

In Exercises 6 and 7, tell whether $A B$ is tangent to $\odot C$. Explain your reasoning.
6.

7.

In Exercises 8 and 9, point B is a point of tangency. Find the radius r of $\odot C$.
8.

9.

In Exercises 10 and 11, points B and D are points of tangency. Find the value(s) of x.
10.

11.

12. Construct $\odot C$ with a 1 -inch radius and a point A outside of $\odot C$. Then construct a line tangent to $\odot C$ that passes through A.
13. Two sidewalks are tangent to a circular park centered at P, as shown.
a. What is the length of sidewalk $\overline{A B}$? Explain.
b. What is the diameter of the park?

\qquad

10.1 Practice B

In Exercises 1-5, use the diagram.

1. Name two radii.
2. Name two chords.
3. Name a diameter.
4. Name a secant.

5. Name a tangent and a point of tangency.

In Exercises 6 and 7, tell whether $\overline{A B}$ is tangent to $\odot C$. Explain your reasoning.
6.

7.

In Exercises 8 and 9, point B is a point of tangency. Find the radius r of $\odot C$.

8.

9.

In Exercises 10 and 11, points B and D are points of tangency. Find the value(s) of x.
10.

11.

12. When will two circles have no common tangents? Justify your answer.
13. During a basketball game, you want to pass the ball to either Player A or Player B. You estimate that Player B is about 15 feet from you, as shown.
a. How far away from you is Player A?
b. How can you prove that Player A and Player B are the same distance from the basket?

