10.1 Practice A

In Exercises 1-5, use the diagram.

- 1. Name the circle.
- **2.** Name two radii.
- **3.** Name two chords.
- **4.** Name a secant.
- **5.** Name a tangent.

In Exercises 6 and 7, tell whether \overline{AB} is tangent to $\odot C$. Explain your reasoning.

6.

7.

In Exercises 8 and 9, point B is a point of tangency. Find the radius r of $\odot C$.

9.

In Exercises 10 and 11, points B and D are points of tangency. Find the value(s) of x.

10.

11.

- **12.** Construct $\odot C$ with a 1-inch radius and a point A outside of $\odot C$. Then construct a line tangent to $\odot C$ that passes through A.
- **13.** Two sidewalks are tangent to a circular park centered at P, as shown.
 - **a.** What is the length of sidewalk AB? Explain.
 - **b.** What is the diameter of the park?

Practice B

In Exercises 1-5, use the diagram.

- 1. Name two radii.
- 2. Name two chords.
- 3. Name a diameter.
- **4.** Name a secant.
- **5.** Name a tangent and a point of tangency.

In Exercises 6 and 7, tell whether \overline{AB} is tangent to $\odot C$. Explain your reasoning.

6.

In Exercises 8 and 9, point B is a point of tangency. Find the radius r of $\odot C$.

In Exercises 10 and 11, points B and D are points of tangency. Find the value(s) of x.

10.

- **12.** When will two circles have no common tangents? Justify your answer.
- **13.** During a basketball game, you want to pass the ball to either Player A or Player B. You estimate that Player B is about 15 feet from you, as shown.
 - **a.** How far away from you is Player A?
 - **b.** How can you prove that Player A and Player B are the same distance from the basket?

