\qquad
6.3 Notetaking with Vocabulary (continued)

Theorems

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle A B C$ meet at point P, and $A P=\frac{2}{3} A E, B P=\frac{2}{3} B F$, and $C P=\frac{2}{3} C D$.

Notes:

Core Concepts

Orthocenter

The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the orthocenter of the triangle.
The lines containing $\overline{A F}, \overline{B D}$, and $\overline{C E}$ meet at the orthocenter G of $\triangle A B C$.

Notes:

Extra Practice

In Exercises 1-3, point P is the centroid of $\triangle L M N$. Find $P N$ and $Q P$.

1. $Q N=33$
2. $Q N=45$
3. $Q N=39$

\qquad
\qquad

6.3 Notetaking with Vocabulary (continued)

In Exercises 4 and 5, point D is the centroid of $\triangle A B C$. Find $C D$ and $C E$.
4. $D E=7$
5. $D E=12$

In Exercises 6-8, find the coordinates of the centroid of the triangle with the given vertices.
6. $A(-2,-1), B(1,8)$, $C(4,-1)$

7. $D(-5,4), E(-3,-2)$, $F(-1,4)$

8. $J(8,7), K(20,5), L(8,3)$

In Exercises 9-11, tell whether the orthocenter is inside, on, or outside the triangle. Then find the coordinates of the orthocenter.
9. $X(3,6), Y(3,0)$,
$Z(11,0)$

10. $L(-4,-4), M(1,1)$, $N(6,-4)$

11. $P(3,4), Q(11,4), R(9,-2)$

