6.3 Notetaking with Vocabulary (continued)

Theorems

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle ABC$ meet at point *P*, and

$$AP = \frac{2}{3}AE$$
, $BP = \frac{2}{3}BF$, and $CP = \frac{2}{3}CD$.

Notes:

Core Concepts

Orthocenter

The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the **orthocenter** of the triangle.

The lines containing \overline{AF} , \overline{BD} , and \overline{CE} meet at the orthocenter G of $\triangle ABC$.

Extra Practice

In Exercises 1–3, point *P* is the centroid of $\triangle LMN$. Find *PN* and *QP*.

6.3 Notetaking with Vocabulary (continued)

In Exercises 4 and 5, point *D* is the centroid of $\triangle ABC$. Find *CD* and *CE*.

In Exercises 6–8, find the coordinates of the centroid of the triangle with the given vertices.

In Exercises 9–11, tell whether the orthocenter is *inside, on,* or *outside* the triangle. Then find the coordinates of the orthocenter.

9. X(3, 6), Y(3, 0),Z(11, 0)

