Geometry Info Sheet \#3

Congruency and Perpendicularity; Segment Bisectors and Relationships

Definitions

Space: The set of all points
Length: The distance between two points

Two figures are congruent if they are the same size and shape.
The mathematical symbol for congruency is: \cong

A fair ruler is a (straight) line with markings in equal intervals from one to the next, and can be constructed with a straightedge and a compass.

Two lines (or a line and a plane, or two planes) are perpendicular if they intersect at a 90-degree angle. The mathematical symbol used to indicate that two figures are perpendicular is: \perp

The midpoint of a segment is the point that divides the segment into two congruent segments.
A segment bisector is a point, ray, line, segment, or plane that intersects a segment at its midpoint (dividing it into two congruent segments).

A perpendicular bisector is a segment bisector that intersects a segment at a 90-degree angle.

Postulates

Segment Congruence Postulate: If two segments have the same length, then they are congruent.
If two segments are congruent, then they have the same length.
Segment Addition Postulate: If point R is between points P and Q on a line, then the length of $P R$ plus the length of $R Q$ equals the length of $P Q(P R+R Q=P Q)$.

Formulas

In a coordinate plane, the midpoint of a segment with endpoints (x_{1}, y_{1}) and (x_{2}, y_{2}) has the coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$. The coordinates of the midpoint are the averages of the coordinates of the endpoints.

Distance d in a coordinate plane between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right): d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

