Geometry Info Sheet \#6

Lines, Slopes, Formulas, and Equations

Definitions

The slope of a line is a number representing the steepness of the line, and is usually represented by the letter m. In a coordinate plane, between any two points, it is the ratio of the vertical change in the y coordinate (rise) to the horizontal change in the x coordinate (run).

A line with a positive slope rises from left to right. A line with a negative slope rises from right to left.

The slope of a horizontal line is zero.
The slope of a vertical line is undefined.

A directed line segment is a segment that represents moving from one point to another.

Postulates

If the slopes of two distinct non-vertical lines are equal, then the lines are parallel. If two non-vertical lines are parallel, then their slopes are equal.
Any two vertical lines are parallel.

If the slopes of two lines have a product of -1 , then the lines are perpendicular. If two non-vertical lines are perpendicular, then the product of their slopes is -1 . Any horizontal line and vertical line are perpendicular.

Formulas

In a coordinate plane, the slope of a non-vertical line containing the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

In a coordinate plane, the midpoint of a segment with endpoints $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) has the coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$. The coordinates of the midpoint are the averages of the coordinates of the endpoints.

Distance d in a coordinate plane between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Forms of Lines in Coordinate Planes

Standard Form of Equation of line containing point $(x, y): \quad A x+B y=C$
Slope-Intercept Form of line containing point (x, y) with slope m and y-intercept $b: y=m x+b$

Point-Slope Form of line containing points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with slope $m: \quad y_{2}-y_{1}=m\left(x_{2}-x_{1}\right)$

