Geometry Info Sheet \#9

Biconditional Statements; New Theorems

Definitions

Biconditional: The combination of a conditional statement and its converse; a Biconditional statement contains the phrase "if and only if" (sometimes written as "iff"); when a conditional statement and its converse are both true, their biconditional is also true; definitions written as conditional statements can always be written as biconditionals

Conjunction: A compound statement that uses the word and to connect simple statements

Disjunction: A compound statement that uses the word or to connect simple statements

Exclusive or: Generally used in everyday language, meaning "one or the other, but not both"
Inclusive or: Generally used in mathematics, meaning "one or the other, or both"

Examples of Biconditional Statements

Definition: Perpendicular lines are two lines that intersect to form right angles.
Conditional: If two lines are perpendicular, then they intersect to form right angles.
Converse: If two lines intersect to form right angles, then they are perpendicular.
Biconditional: Two lines are perpendicular if and only if they intersect to form right angles.

Postulate: If two angles have the same measure, then the angles are congruent.
Converse: If two angles are congruent, then the angles have the same measure.
Biconditional: Two angles have the same measure if and only if the angles are congruent.

Theorems

Overlapping Segments Theorem: Given points A, B, C, and D arranged on a line as shown, the following statements are true:

1) If $A B=C D$, then $A C=B D$.
2) If $A C=B D$, then $A B=C D$.

Overlapping Angles Theorem:

Given $\angle A O D$ with points B and C in its interior as shown, the following statements are true:

1) If $\mathrm{m} \Varangle A O B=\mathrm{m} \Varangle C O D$, then $\mathrm{m} \Varangle A O C=\mathrm{m} \Varangle B O D$.
2) If $\mathrm{m} \Varangle A O C=m \Varangle B O D$, then $\mathrm{m} \Varangle A O B=\mathrm{m} \Varangle C O D$.
