Geometry Info Sheet #9

Biconditional Statements; New Theorems

Definitions

- **Biconditional:** The combination of a conditional statement and its converse; a Biconditional statement contains the phrase "if and only if" (sometimes written as "iff"); when a conditional statement and its converse are both true, their biconditional is also true; definitions written as conditional statements can always be written as biconditionals
- **Conjunction**: A compound statement that uses the word **and** to connect simple statements
- Disjunction: A compound statement that uses the word **or** to connect simple statements
- **Exclusive** *or*: Generally used in everyday language, meaning "one or the other, but not both"
- **Inclusive** or: Generally used in mathematics, meaning "one or the other, or both"

Examples of Biconditional Statements

Definition:	Perpendicular lines are two lines that intersect to form right angles.
Conditional:	If two lines are perpendicular, then they intersect to form right angles.
Converse:	If two lines intersect to form right angles, then they are perpendicular.
Biconditional :	Two lines are perpendicular if and only if they intersect to form right angles

Postulate: If two angles have the same measure, then the angles are congruent. Converse: If two angles are congruent, then the angles have the same measure. **Biconditional**: Two angles have the same measure if and only if the angles are congruent.

Theorems

Overlapping Segments Theorem: Given points A, B, C, and D arranged on a line as shown, the following statements are true:

1) If AB = CD, then AC = BD. 2) If AC = BD, then AB = CD.

Overlapping Angles Theorem:

Given $\angle AOD$ with points *B* and *C* in its interior as shown, the following statements are true:

1) If $m \measuredangle AOB = m \measuredangle COD$, then $m \measuredangle AOC = m \measuredangle BOD$.

2) If $m \measuredangle AOC = m \measuredangle BOD$, then $m \measuredangle AOB = m \measuredangle COD$.