Geometry Info Sheet #11

Transversals, Lines, and Related Angles

Definitions

Transversal: A line, ray, or segment that intersects two or more coplanar lines, rays, or segments, each at a different point

The following definitions refer to the above diagram, in which transversal \overline{T} intersects lines \overline{R} and \overline{S} . Note that these definitions do <u>not</u> require that the two lines be parallel to each other.

Alternate Exterior Angles:	∡1 and ∡8	∡2 and ∡7		
Alternate Interior Angles:	∡3 and ∡6	≰ 4 and ≰ 5		
Same-Side Interior Angles:	∡3 and ∡5	∡ 4 and ∡ 6		
Corresponding Angles:	≰1 and ≰5	≰ 2 and ≰ 6	∡3 and ∡7	∡4 and ∡8

Note that the *Big Ideas* textbook refers to same-side interior angles as <u>consecutive interior angles</u>.

Postulates and Theorems

Corresponding Angles Postulate:	If a transversal intersects two parallel lines, then <u>corresponding</u> angles are <u>congruent</u> .
Alternate Exterior Angles Theorem:	If a transversal intersects two parallel lines, then <u>alternate exterior</u> angles are <u>congruent</u> .
Alternate Interior Angles Theorem:	If a transversal intersects two parallel lines, then <u>alternate interior</u> angles are <u>congruent</u> .
Same-Side Interior Angles Theorem:	If a transversal intersects two parallel lines, then <u>same-side interior</u> angles are <u>supplementary</u> .