Geometry Info Sheet \#16

New Theorems; Example Geometric Proofs

Theorems

Congruent Supplements Theorem:
If two angles are supplements of congruent angles (or of the same angle), then the two angles are congruent.

Congruent Complements Theorem: If two angles are complements of congruent angles (or of the same angle), then the two angles are congruent.

Example Proofs

Given: $\angle 1 \cong \angle 3$
$\angle 1$ and $\angle 2$ are supplementary
$\angle 3$ and $\angle 4$ are supplementary
Prove: $\angle 2 \cong \angle 4$ (Congruent Supplements Theorem)

Step \#	Statement	Reason
1.	$\angle 1 \cong \angle 3$	Given
2.	$\mathrm{m} x 1=\mathrm{m}$ ¢ 3	Two congruent angles have equal measures
3.	$\angle 1$ and $\angle 2$ are supplementary	Given
4.	$\angle 3$ and $\angle 4$ are supplementary	Given
5.	$\mathrm{m} \Varangle 1+\mathrm{m} \Varangle 2=180^{\circ}$	Definition of Supplementary Angles
6.	$\mathrm{m} \Varangle 3+\mathrm{m} \Varangle 4=180^{\circ}$	Definition of Supplementary Angles
7.	$m \nless 1+m \nless 2=m \Varangle 3+m \nless 4$	Substitution Property of Equality (from steps 5 and 6)
8.	$m \not m 1+m \nless 2=m \Varangle 1+m \nless 4$	Substitution Property of Equality (from steps 2 and 7)
9.	$\mathrm{m} \Varangle 2=\mathrm{m}$ ¢ 4	Subtraction Property of Equality
10.	$\angle 2 \cong \angle 4$	Two angles with equal measures are congruent

Given: $\angle 1$ and $\angle 2$ are supplementary $\angle 1$ and $\angle 3$ are supplementary

Prove: $\angle 2 \cong \angle 3$ (Congruent Supplements Theorem)

Step \#	Statement	Reason
1.	$\angle 1$ and $\angle 2$ are supplementary $\angle 1$ and $\angle 3$ are supplementary	Given
2.	$m \Varangle 1+m \Varangle 2=180^{\circ}$ $m \Varangle 1+m \Varangle 3=180^{\circ}$	Definition of Supplementary Angles
3.	$m \Varangle 1+m \Varangle 2=m \Varangle 1+m \Varangle 3$	Substitution Property of Equality (from step 2)
4.	$m \Varangle 1=m \Varangle 1$	Reflexive Property of Congruence This step can be skipped.
5.	$m \Varangle 2=m \Varangle 3$	Subtraction Property of Equality
6.	$\angle 2 \cong \angle 3$	Two angles with equal measures are congruent

