Geometry Info Sheet #36

Right Triangle Similarity and Geometric Mean

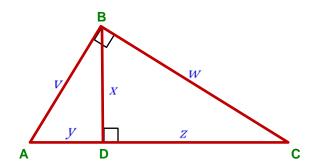
Definitions

Geometric Mean: The n^{th} root of the product of n numbers

The geometric mean of <u>two</u> positive numbers, a and b, is \sqrt{ab} , and the geometric mean of <u>three</u> positive numbers, a, b, and c, is $\sqrt[3]{abc}$, and the geometric mean of <u>four</u> positive numbers, a, b, c, and d, is $\sqrt[4]{abcd}$, and so on.

Theorems

Hypotenuse Altitude Theorem: If an altitude is drawn to the hypotenuse of a <u>right</u> triangle, then the two triangles formed are similar to the original triangle and to each other.



 $\triangle ABC \sim \triangle ADB \sim \triangle BDC$

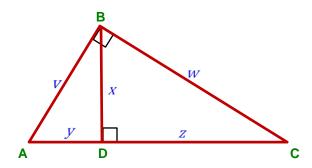
Proportion Examples

$$\frac{V}{W} = \frac{Y}{X} = \frac{X}{Z}$$
 or $\frac{W}{Y+Z} = \frac{X}{V} = \frac{Z}{W}$ or $\frac{V}{Y+Z} = \frac{Y}{V} = \frac{X}{W}$

Corollaries to Hypotenuse Altitude Theorem

In a <u>right</u> triangle, the length of the altitude to the hypotenuse is the <u>geometric mean</u> of the lengths of the segments into which it divides the hypotenuse.

In a <u>right</u> triangle, the altitude to the hypotenuse divides the hypotenuse so that the length of each leg is the <u>geometric mean</u> of the lengths of the hypotenuse and the adjacent hypotenuse segment.



$$x^2 = yz$$
 $\longrightarrow x = \sqrt{yz}$

$$v^2 = y(y+z) \longrightarrow v = \sqrt{y(y+z)}$$

$$w^2 = z(y+z) \longrightarrow w = \sqrt{z(y+z)}$$