Geometry Info Sheet \#41

Arcs, Chords, and Congruence in Circles

Definitions

Circle: \quad The set of all points in a plane equidistant from a given point (the center)
Radius: A line segment from the center of a circle to any point on the circle

Chord: A line segment whose endpoints lie on a circle
Diameter: A chord which passes through the center of a circle
Arc: A curved, unbroken section of a circle

Semicircle: An arc whose endpoints are the endpoints of a diameter of the same circle
Minor Arc: An arc that is shorter than a semicircle of the same circle

For a minor arc on a circle, the corresponding chord of that arc is the chord whose endpoints match the endpoints of the arc. For a chord with endpoints on a circle, its corresponding arc is the minor arc whose endpoints match those of the chord.

Theorems

In a circle:

1) A radius (or diameter) that is perpendicular to a chord bisects the chord and its corresponding arc.
2) A radius (or diameter) that bisects a chord (that is not a diameter) is perpendicular to the chord.
3) A perpendicular bisector of a chord passes through the center of the circle.

In the same circle or in congruent circles:

1) The corresponding arcs of congruent chords are congruent.
2) The corresponding chords of congruent minor arcs are congruent.

In the same circle or in congruent circles:

1) Chords equidistant from the center (or centers) are congruent.
2) Congruent chords are equidistant from the center (or centers).
