Geometry Info Sheet #41

Arcs, Chords, and Congruence in Circles

Definitions

Circle:	The set of all points in a plane equidistant from a given point (the <u>center</u>)
Radius:	A line segment from the center of a circle to any point on the circle
Chord:	A line segment whose endpoints lie on a circle
Diameter:	A chord which passes through the center of a circle
Arc:	A curved, unbroken section of a circle
Semicircle:	An arc whose endpoints are the endpoints of a diameter of the same circle
Minor Arc:	An arc that is shorter than a semicircle of the same circle

For a minor arc on a circle, the <u>corresponding chord</u> of that arc is the chord whose endpoints match the endpoints of the arc. For a chord with endpoints on a circle, its <u>corresponding arc</u> is the minor arc whose endpoints match those of the chord.

Theorems

In a circle:

- 1) A radius (or diameter) that is perpendicular to a chord bisects the chord and its corresponding arc.
- 2) A radius (or diameter) that bisects a chord (that is not a diameter) is perpendicular to the chord.
- 3) A perpendicular bisector of a chord passes through the center of the circle.

In the same circle or in congruent circles:

- 1) The corresponding arcs of congruent chords are congruent.
- 2) The corresponding chords of congruent minor arcs are congruent.

In the same circle or in congruent circles:

- 1) Chords equidistant from the center (or centers) are congruent.
- 2) Congruent chords are equidistant from the center (or centers).