Geometry Info Sheet #44

Equations of Circles in Coordinate Planes

Definitions

Circle:	The set of all points in a plane equidistant from a given point (the <u>center</u>)
Radius:	A line segment from the center of a circle to any point on the circle
X-Intercept:	The point(s) where a figure in a coordinate plane intersects (touches or crosses) the <u>x-axis</u> ; at an x-intercept, the <u>y-value is zero</u>
Y-Intercept:	The point(s) where a figure in a coordinate plane intersects (touches or crosses) the <u>y-axis</u> ; at a y-intercept, the <u>x-value is zero</u>

Forms of Circles in Coordinate Planes

The **<u>standard form</u>** of an equation of a circle containing point (x, y), with radius r, and centered at point (h, k), is given by:

 $(x-h)^2 + (y-k)^2 = r^2$

For a circle centered at the origin, the **<u>standard form</u>** is given by:

 $x^2 + y^2 = r^2$

The **general form** of an equation of a circle containing point (x, y) is given by: $x^2 + y^2 + Ax + By + C = 0$

Examples

Radius:5Y-Intercepts:-5and5

Standard Form Equation:

$$x^2 + y^2 = 5^2$$

General Form Equation: $x^2 + y^2 - 25 = 0$

General Form Equation: $x^{2} + y^{2} - 2x - 4y - 11 = 0$