Geometry Info Sheet \#46

Areas of Rhombuses, Kites, and Regular Polygons

Definitions

Polygon: A two-dimensional closed plane figure made up of at least three straight line segments (no curves) such that each segment intersects exactly two other segments; the line segments are the sides of the polygon, and the common endpoints of the segments are the vertices

A diagonal of a polygon is a segment that joins two non-adjacent vertices.

Regular Polygon: A polygon in which all of the sides are congruent and all of the angles are congruent

A central angle of a regular polygon is an angle whose vertex is the center of the polygon and whose sides pass through two consecutive vertices of the polygon.

Apothem: A line segment from the center of a regular polygon to the midpoint of any side, forming a right angle

The center and radius of a regular polygon are the center and radius of the polygon's circumscribed circle.

Circle A is circumscribed about the regular polygon BCDEF.

Center: A
Radii: $\quad \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$
Apothem: $\quad \overline{\mathrm{AG}}$
Central Angle: $\angle B A C$

Formulas

The area A of a rhombus or a kite with diagonals d_{1} and d_{2} is given by: $\quad A=\frac{1}{2} d_{1} d_{2}$

The area A of a regular polygon with apothem a and perimeter p is given by: $A=\frac{1}{2} a p$

The measure of a central angle of a regular polygon with n sides is:

$$
\frac{360^{\circ}}{n}
$$

