Geometry Info Sheet #52

Cylinders

Definitions

Cylinder:	A geometric solid with two congruent and parallel flat circular faces (<u>bases</u>) connected by a curved surface (called the <u>lateral surface</u>)
Altitude:	A segment with endpoints in the planes containing the two bases of a cylinder and perpendicular to both
Height:	The length of an altitude of a cylinder
Axis:	For a cylinder, the segment joining the centers of the two bases
Right Cylinder:	A cylinder in which the axis is perpendicular to the two bases; the bases are directly opposite each other
Oblique Cylinder :	A cylinder in which the bases are not directly opposite each other

Since cylinders contain curved surfaces, they are <u>not</u> polyhedrons. Note, also, that cylinders can have elliptical bases, but for purposes of this Info Sheet, circular bases will be assumed.

Formulas

The lateral area <i>L</i> of a right circular cylinder	
with perimeter p and height h is given by:	$L = ph$ or $L = 2\pi rh$

The <u>surface area</u> *S* of a <u>right circular cylinder</u> with base area *B*, lateral area *L*, radius *r*, and height *h* is given by: S = 2B + L or $S = 2\pi r^2 + 2\pi rh$

The **volume** V of **any circular cylinder** with base area B, radius r, and height h is given by: V = Bh or $V = \pi r^2 h$