Geometry Info Sheet \#53

Cones

Definitions

Cone:
A geometric solid with a flat circular base and a curved lateral surface that connects the base to a point not in the plane of the base (the vertex or apex)

Altitude: \quad The perpendicular segment from the vertex of a cone to the plane of its base

Height: \quad The length of the altitude of a cone
Axis: \quad For a cone, the segment connecting the vertex to the center of the base

Slant Height: For a right cone, the distance from the vertex to any point along the circular base

Right Cone: A cone in which the altitude intersects the base at its center; the vertex lies directly above the center of the base

Oblique Cone: A cone in which the vertex does not lie directly above the center of the base

As is the case with cylinders, since cones contain curved surfaces, they are not polyhedrons. Cones can also have elliptical bases, but for purposes of this Info Sheet, circular bases will be assumed.

Formulas

The lateral area L of a right circular cone with
base perimeter p and slant height ℓ is given by:

$$
L=\frac{1}{2} p \ell \text { or } L=\pi r \ell
$$

The surface area S of a right circular cone with
base area B, lateral area L, radius r, and slant height ℓ is given by: $S=B+L$ or $S=\pi r^{2}+\pi r \ell$

The volume V of any circular cone with
base area B, radius r, and height h is given by:

$$
V=\frac{1}{3} B h \text { or } V=\frac{1}{3} \pi r^{2} h
$$

