\qquad

1.6 Practice A

In Exercises 1-3, use the figures.

1. Name a pair of adjacent complementary angles.
2. Name a pair of nonadjacent complementary angles.
3. Name a pair of nonadjacent supplementary angles.

In Exercises 4 and 5, find the angle measure.

4. $\angle 1$ is a complement of $\angle 2$, and $m \angle 2=36^{\circ}$. Find $m \angle 1$.
5. $\angle 3$ is a supplement of $\angle 4$, and $m \angle 4=75^{\circ}$. Find $m \angle 3$.

In Exercises 6 and 7, find the measure of each angle.

6. $\angle W X Y$ and $\angle Y X Z$ are supplementary angles, $m \angle W X Y=(6 x+59)^{\circ}$, and $m \angle Y X Z=(3 x-14)^{\circ}$.
7. $\angle A B C$ and $\angle C B D$ are complementary angles, $m \angle A B C=(3 x+6)^{\circ}$, and $m \angle C B D=(4 x-14)^{\circ}$.

In Exercises 8-10, use the figure.

8. Identify the linear pairs that include $\angle 5$.
9. Are $\angle 3$ and $\angle 5$ vertical angles? Explain your reasoning.
10. Are $\angle 2$ and $\angle 4$ vertical angles? Explain your reasoning.

In Exercises 11-13, write and solve an algebraic equation to find the measure of each angle based on the given description.
11. Two angles form a linear pair. The measure of one angle is 24° more than the measure of the other angle.
12. The measure of an angle is three times the measurement of its complement.
13. The measure of one angle is 15 less than half the measurement of its supplement.
14. The figure shows the design on an outdoor fence.
a. Name a pair of adjacent supplementary angles.
b. Name a pair of nonadjacent supplementary angles.
c. Identify the linear pairs that include $\angle 5$.
d. Find $m \angle 3$. Explain your reasoning.

