Period _____

Geometric Proofs #6 – Congruent Triangles

Given: $\overline{RS} \perp \overline{ST}$ and $\overline{TU} \perp \overline{ST}$ and V is the midpoint of \overline{ST}

Prove: $\Delta RSV \cong \Delta UTV$

Step Statement

- 1) $\overline{RS} \perp \overline{ST}$, $\overline{TU} \perp \overline{ST}$
- 2) $m \not = 90^{\circ}$, $m \not = 7 = 90^{\circ}$
- 3) $m \not = M \not= M \not = M$
- 4) $\angle S \cong \angle T$
- 5) V is the midpoint of \overline{ST}
- 6) $\overline{SV} \cong \overline{TV}$
- 7) $\angle RVS \cong \angle UVT$
- 8) $\Delta RSV \cong \Delta UTV$

1) Given

Step

- 2) Definition of Perpendicular Lines
- 3) Substitution Property (from step 2)
- 4) Two angles with equal measures are congruent
- 5) Given
- 6) Definition of Segment Midpoint
- 7) Vertical angles are congruent
- 8) ASA (from steps 3, 5, and 6)

Given: \overline{EG} and \overline{FH} bisect each other at D

Prove: $\overline{EF} \parallel \overline{GH}$

Step

Statement

Step

- 1) \overline{EG} and \overline{FH} bisect each other at D
- 2) D is the midpoint of \overline{EG} and \overline{FH}
- 3) $\overline{ED} \cong \overline{DG}$, $\overline{FD} \cong \overline{DH}$
- 4) $\angle EDF \cong \angle GDH$
- 5) $\Delta EDF \cong \Delta GDH$
- 6) $\angle E \cong \angle G$
- 7) $\overline{EF} \parallel \overline{GH}$

- 1) Given
- 2) Definition of Segment Bisector
- 3) Definition of Segment Midpoint
- 4) Vertical angles are congruent
- 5) SAS (from steps 3 and 4)
- 6) CPCTC
- 7) Transversal with \cong alternate interior \angle s $\rightarrow \parallel$ lines

Given: $\overline{AB} \cong \overline{FE}$ and $\overline{CG} \cong \overline{DG}$ and $\angle A \cong \angle F$

Statement

Prove: $\angle B \cong \angle E$

- 1) $\overline{AB} \cong \overline{FE}$, $\angle A \cong \angle F$
- 2) $\overline{CG} \cong \overline{DG}$

Step

- 3) $\angle GCD \cong \angle GDC$
- 4) $\triangle ADB \cong \triangle FCE$
- 5) $\angle B \cong \angle E$

1) Given

Step

- 2) Given
- 3) Two congruent Δ sides \Rightarrow congruent opposite angles
- 4) AAS (from steps 1 and 3)
- 5) CPCTC