

Practice Masters Level A

2.4 Building a System of Geometry Knowledge

Match each property with its definition.

_____1. Addition Property

_____2. Symmetric Property

3. Substitution Property

_____4. Multiplication Property

_____5. Division Property

6. Reflexive Property

7. Subtraction Property

o Transitiva Property

______8. Transitive Property

a. If a = b, then ac = bc.

b. If a = b, then a - c = b - c.

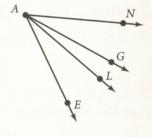
c. For all real numbers a, a = a.

d. If a = b, you may replace a with b in any true equation containing a and the resulting equation will still be true.

e. If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.

f. If a = b, then a + c = b + c.

g. For all real numbers a and b, if a = b, then b = a.

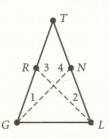

h. For all real numbers a and b, if a = b and b = c, then a = c.

Refer to the diagram at right, in which $m \angle NAG = m \angle EAL$. Use the Overlapping Angles Theorem to complete the following:

9.
$$m \angle NAG + m \angle GAL = m \angle GAL +$$

If $m \angle NAG = 24^{\circ}$, and $m \angle NAL = 36^{\circ}$, find the following:

10. m∠*GAL* ______ 11. m∠GAE _____


Complete the proof below:

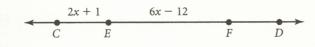
Given: $m \angle 1 = m \angle 2$

 $m \angle T + m \angle 3 + m \angle 2 = 180^{\circ}$

 $m \angle T + m \angle 1 + m \angle 4 = 180^{\circ}$

Prove: $m \angle 3 = m \angle 4$

Statements	Reasons
$m \angle T = m \angle T$	12.
$m \angle 1 = m \angle 2$ $m \angle T + m \angle 3 + m \angle 2 = 180^{\circ}$ $m \angle T + m \angle 1 + m \angle 4 = 180^{\circ}$	Given
$\frac{1}{m \angle T + m \angle 3 + m \angle 2 = m \angle T + m \angle 1 + m \angle 4}$	13.
$m \angle 3 + m \angle 2 = m \angle 1 + m \angle 4$	14.
$m \angle 3 + m \angle 1 = m \angle 1 + m \angle 4$	15.
m∠3 = m∠4	16.


Practice Masters Level B

$2.4\,$ Building a System of Geometry Knowledge

Identify the Properties of Equality that justify the indicated steps.

Statements	Reasons
3x + 12 = 5x	Given
12 = 2x	1.
6 = x	2.

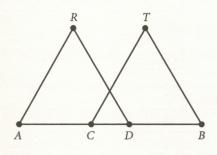
For Exercises 3-6, use the figure at the right. If CE = FD and CD = 11x-21, find the following:

- 3. x ______ 4. CE _____
- 5. EF ______ 6. CD _____

For Exercises 7-10, use the figure at the right. $\angle NXG \cong \angle LXE, \angle AXN \cong \angle GXL.$

7.
$$m \angle NXG + m \angle GXL =$$

If $m\angle AXN = 2(3x + 4)$, and $m\angle GXL = 8x-9$, find the following:



Fill in the blanks in the following proof:

Given: $\triangle RDA$ and $\triangle CTB$ are equilateral triangles.

$$RD = TC$$

Prove: AC = DB

Statements	Reasons
11. RD =	Definition of equilateral triangle
12. TC =	Definition of equilateral triangle
RD = TC	Given
AD = CB	13.
AC + CD = AD CD + DB = CB	Segment Addition Postulate
AC + CD = CD + DB	14.
CD = CD	15.
AC = DB	16.