GEOMETRY: TRANSVERSAL PROOFS (CHAPTER 3.3)

ALTERNATE INTERIOR ANGLES THEOREM

Given: Line m is parallel to line n; Line p is a transversal

1

Prove: $\angle 3 \cong \angle 6$

Statement	Reason
	,

ALTERNATE EXTERIOR ANGLES THEOREM

Given: Line m is parallel to line n; Line p is a transversal

Prove: $\angle 1 \cong \angle 8$

Statement	Reason	

SAME-SIDE INTERIOR ANGLES THEOREM

Given: Line m is parallel to line n;

Line p is a transversal

Prove: $m \angle 3 + m \angle 5 = 180^{\circ}$

Statement	Reason

SAME-SIDE EXTERIOR ANGLES THEOREM

Given: Line m is parallel to line n; Line p is a transversal

Prove: $m \angle 2 + m \angle 8 = 180^{\circ}$

Statement	Reason

GEOMETRY: CONVERSES OF TRANSVERSAL PROOFS (CHAPTER 3.4)

CONVERSE OF ALTERNATE INTERIOR ANGLES THEOREM

Given: $\angle 3 \cong \angle 6$

Prove: Line m is parallel to line n

Statement	Reason	

CONVERSE OF ALTERNATE EXTERIOR ANGLES THEOREM

Given: $\angle 1 \cong \angle 8$

Prove: Line m is parallel to line n

Statement	Reason	

CONVERSE OF SAME-SIDE INTERIOR ANGLES THEOREM

Given: $\angle 3$ and $\angle 5$ are supplementary Prove: Line m is parallel to line n

Statement	Reason

CONVERSE OF SAME-SIDE EXTERIOR ANGLES THEOREM

Given: $\angle 2$ and $\angle 8$ are supplementary Prove: Line m is parallel to line n

Statement	Reason