GEOMETRY: TRANSVERSAL PROOFS (CHAPTER 3.3)

ALTERNATE INTERIOR ANGLES THEOREM

Given: Line m is parallel to line n; Line p is a transversal

Prove: $\angle 3 \cong \angle 6$

Statement	Reason
Line m line n; Line p is a transversal	Given
3 2	Vertical s are
2 6	Transversal with lines means corresponding s are
3 6	Transitive/Substitution Property

SAME-SIDE INTERIOR ANGLES THEOREM

Given: Line m is parallel to line n;

Line p is a transversal

Prove: $m \angle 3 + m \angle 5 = 180^{\circ}$

Statement	Reason
Line m line n; Line p is a transversal	Given
m 3+m 1=180°	Two s forming a linear pair are supplementary
1 5	Transversal with lines means corresponding s are
m 1 = m 5	Two s have = measures
m $3 + m$ $5 = 180^{\circ}$	Substitution Property (from steps 2 and 4)

ALTERNATE EXTERIOR ANGLES THEOREM

Given: Line m is parallel to line n; Line p is a transversal

Prove: $\angle 1 \cong \angle 8$

Statem	ent	Reason
	n line n; o is a transversal	Given
1	5	Transversal with lines means corresponding s are
5	8	Vertical s are
1	8	Transitive/Substitution Property

SAME-SIDE EXTERIOR ANGLES THEOREM

Given: Line m is parallel to line n; Line p is a transversal

Prove: $m\angle 2 + m\angle 8 = 180^{\circ}$

Statement	Reason
Line m line n; Line p is a transversal	Given
m 2 + m 4 = 180°	Two s forming a linear pair are supplementary
4 8	Transversal with lines means corresponding s are
m 4 = m 8	Two s have = measures
$m + 2 + m + 8 = 180^{\circ}$	Substitution Property (from steps 2 and 4)

GEOMETRY: CONVERSES OF TRANSVERSAL PROOFS (CHAPTER 3.4)

CONVERSE OF ALTERNATE INTERIOR ANGLES THEOREM

Given: $\angle 3 \cong \angle 6$

Prove: Line m is parallel to line n

Statement	Reason
3 6	Given
3 2	Vertical s are
2 6	Substitution Property (from steps 1 and 2)
Line m line n	Transversal with corresponding s means lines

CONVERSE OF ALTERNATE EXTERIOR ANGLES THEOREM

Given: $\angle 1 \cong \angle 8$

Prove: Line m is parallel to line n

Statement	Reason
1 8	Given
1 4	Vertical s are
4 8	Substitution Property (from steps 1 and 2)
Line m line n	Transversal with corresponding s means lines

CONVERSE OF SAME-SIDE INTERIOR ANGLES THEOREM

Given: $\angle 3$ and $\angle 5$ are supplementary Prove: Line m is parallel to line n

Statement	Reason
3 and 5 are supplementary	Given
$m 3 + m 5 = 180^{\circ}$	Definition of Supplementary Angles
m 3+m 1=180°	Two s forming a linear pair are supplementary
m + 3 + m + 5 = m + 3 + m + 1	Substitution Property (from steps 2 and 3)
m 5 = m 1	Subtraction Property
5 1	Two s with = measures are
Line m line n	Transversal with corresponding s means lines

CONVERSE OF SAME-SIDE EXTERIOR ANGLES THEOREM

Given: $\angle 2$ and $\angle 8$ are supplementary Prove: Line m is parallel to line n

Statement	Reason
2 and 8 are supplementary	Given
m 2 + m 8 = 180°	Definition of Supplementary Angles
$m + 2 + m + 4 = 180^{\circ}$	Two s forming a linear pair are supplementary
m + 2 + m + 8 = m + 2 + m + 4	Substitution Property (from steps 2 and 3)
m 8 = m 4	Subtraction Property
8 4	Two s with = measures are
Line m line n	Transversal with corresponding s means lines