

charAt

public char charAt(int index)
Returns the character at the specified index. An index ranges from 0 to length() - 1. The first character
of the sequence is at index 0, the next at index 1, and so on, as for array indexing.

Specified by:
charAt in interface CharSequence

Parameters:
index - the index of the character.

Returns:
the character at the specified index of this string. The first character is at index 0.

Throws:
IndexOutOfBoundsException - if the index argument is negative or not less than the length of this string.

compareTo

public int compareTo(String anotherString)
Compares two strings lexicographically. The comparison is based on the Unicode value of each character
in the strings. The character sequence represented by this String object is compared lexicographically to
the character sequence represented by the argument string. The result is a negative integer if this String
object lexicographically precedes the argument string. The result is a positive integer if this String object
lexicographically follows the argument string. The result is zero if the strings are equal; compareTo returns
0 exactly when the equals(Object) method would return true.

This is the definition of lexicographic ordering. If two strings are different, then either they have different
characters at some index that is a valid index for both strings, or their lengths are different, or both. If they
have different characters at one or more index positions, let k be the smallest such index; then the string
whose character at position k has the smaller value, as determined by using the < operator,
lexicographically precedes the other string. In this case, compareTo returns the difference of the two
character values at position k in the two string -- that is, the value:

 this.charAt(k)-anotherString.charAt(k)

If there is no index position at which they differ, then the shorter string lexicographically precedes the
longer string. In this case, compareTo returns the difference of the lengths of the strings -- that is, the value:

 this.length()-anotherString.length()

Parameters:
anotherString - the String to be compared.

Returns:
the value 0 if the argument string is equal to this string; a value less than 0 if this string is lexicographically
less than the string argument; and a value greater than 0 if this string is lexicographically greater than the
string argument.

equals

public boolean equals(Object anObject)
Compares this string to the specified object. The result is true if and only if the argument is not null and
is a String object that represents the same sequence of characters as this object.

Overrides:
equals in class Object

Parameters:
anObject - the object to compare this String against.

Returns:
true if the String are equal; false otherwise

indexOf

public int indexOf(String str)
Returns the index within this string of the first occurrence of the specified substring. The integer returned is
the smallest value k such that:

 this.startsWith(str, k)

is true.

Parameters:
str - any string.

Returns:
if the string argument occurs as a substring within this object, then the index of the first character of the
first such substring is returned; if it does not occur as a substring, -1 is returned.

indexOf

public int indexOf(String str,
 int fromIndex)

Returns the index within this string of the first occurrence of the specified substring, starting at the
specified index. The integer returned is the smallest value k for which:

 k >= Math.min(fromIndex, str.length()) && this.startsWith(str, k)

If no such value of k exists, then -1 is returned.

Parameters:
str - the substring for which to search.
fromIndex - the index from which to start the search.

Returns:
the index within this string of the first occurrence of the specified substring, starting at the specified index.

substring

public String substring(int beginIndex)
Returns a new string that is a substring of this string. The substring begins with the character at the
specified index and extends to the end of this string.

Examples:
"unhappy".substring(2) returns "happy"
"Harbison".substring(3) returns "bison"
"emptiness".substring(9) returns "" (an empty string)

Parameters:
beginIndex - the beginning index, inclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if beginIndex is negative or larger than the length of this String object.

substring

public String substring(int beginIndex,
 int endIndex)

Returns a new string that is a substring of this string. The substring begins at the specified beginIndex and
extends to the character at index endIndex - 1. Thus the length of the substring is:

endIndex-beginIndex.

Examples:
"hamburger".substring(4, 8) returns "urge"
"smiles".substring(1, 5) returns "mile"

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if the beginIndex is negative, or endIndex is larger than the length of
this String object, or beginIndex is larger than endIndex.

	charAt
	compareTo
	equals
	indexOf
	indexOf
	substring
	substring

